

Магнитное охлаждение

Магни́тное охлажде́ние, метод охлаждения, основанный на использовании магнитокалорического эффекта, благодаря которому магнитный материал при намагничивании в адиабатических условиях изменяет свою температуру. Так, например, ферромагнетики и парамагнетики нагреваются при намагничивании и охлаждаются при размагничивании. Изначально магнитное охлаждение как метод получения низких и сверхнизких температур (1–0,01 К) путём адиабатического размагничивания парамагнитных солей был предложен П. Дебаем (1926) и У. Ф. Джиоком (1927). Соль, содержащую магнитные ионы с большим магнитным моментом (как правило, соль редкоземельных металлов), намагничивали при относительно высокой температуре, затем её охлаждали до минимально возможной температуры, после чего магнитное поле выключали. В результате затрат тепловой энергии на разориентацию магнитных моментов ионов соль охлаждалась, что позволяло получать температуры, близкие к абсолютному нулю. Использование парамагнитных свойств ядер даёт возможность получать температуры порядка 10^{-6} К.

Во 2-й половине 20 – начале 21 вв. была теоретически рассмотрена и экспериментально продемонстрирована возможность использования магнитного охлаждения не только в области криогенных температур, но и при значительно более высоких температурах, вплоть до комнатных и выше. Используя магнитный материал в качестве рабочего тела, а также циклы намагничивания – размагничивания (магнитные тепловые соответствующим отводом теплоты на разных стадиях цикла, организовать работу магнитного холодильника – устройства, использующего охлаждение, аналогично организована TOMY, как традиционного холодильника. Принцип действия последнего основан на применении циклов сжатия – расширения и испарения – конденсации газов. Принцип действия магнитного холодильника основан на изменении энтропии магнитного материала под действием магнитного поля. На рис. 1 представлена ST-диаграмма, на которой показаны зависимости полной энтропии S ферромагнитного материала от температуры T в магнитном поле $(H \neq 0)$ и в отсутствие магнитного поля (H=0). Абсолютная величина изменения магнитной части энтропии $\Delta S_{M}(T)=S(H)-S(0)$ достигает своего максимума в области температуры Кюри и невелика вдали от этой температуры. Магнитный цикл Карно, осуществляемый от температуры $T_{\,{\scriptscriptstyle X}}$ (температура охлаждаемой нагрузки) до температуры Т г (температура горячего теплообменника), представлен четырёхугольником АВСО. За один цикл в изотермических процессах от нагрузки поглощается (при размагничивании) количество теплоты, равное $\Delta S_{\rm M} T_{\rm x}$, где $\Delta S_{\rm M} = S_2 - S_1$ и отводится в теплообменник (при намагничивании) количество теплоты, равное $\Delta S_{\rm M} T_{\rm r}$, на что затрачивается работа, равная $\Delta S_{\rm M} (T_{\rm r} - T_{\rm x})$. Рабочий интервал температур холодильника, работающего по этому циклу $(T_{\rm r} - T_{\rm x})$, ограничен уменьшением величины $\Delta S_{\rm M}$ при удалении от точки Кюри, приводящем к уменьшению его эффективности.

Принцип действия магнитного холодильника: зависимость полной энтропии S ферромагнитного материала от температуры T в магнитном поле $(H \neq 0)$ и в отсутствие магнитного поля (H = 0).

Рис.1 Принцип действия магнитного холодильника.

В простейшем случае полную энтропию магнитного материала можно рассматривать как сумму энтропий, одна из которых связана с магнитной подсистемой материала, а другая — с его кристаллической решёткой. При увеличении температуры решёточный вклад в энтропию быстьро возрастает, что приводит к уменьшению эффективности магнитного цикла Карно (прямоугольник ABCD на рис. 1). Поэтому магнитный цикл Карно применяется при температурах, не превышающих 20 К. Адиабатическое размагничивание можно отнести к типу магнитного охлаждения, в котором используют магнитный цикл Карно. При более высоких температурах применяются регенеративные магнитные циклы: циклы Эриксона и Брайтона, представленные на рис. 1 фигурами АFCE (намагничивание осуществляется изотермически) и AGCI (намагничивание осуществляется адиабатически), а также активный магнитный регенеративный (AMP) цикл охлаждения, в котором магнитный магериал используется не только как холодильный агент, но и как регенератор.

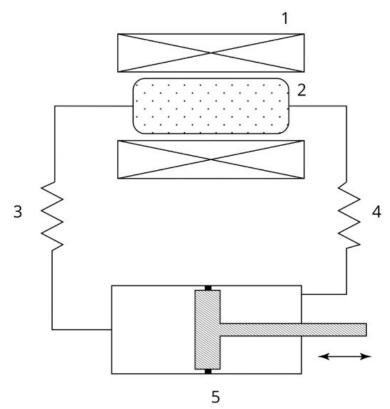


Рис.2. Схема магнитного холодильника, работающего по AMP циклу: 1 — источник магнитного поля, 2 — активный магнитный регенератор с магнитным рабочим телом, 3 — холодный теплообменник, 4 — горячий теплообменник, 5 — дисплейсер.

На рис. 2 представлена схема магнитного холодильника, работающего по АМР циклу (АМР-холодильника). Устройство состоит из источника магнитного намагничивающего магнитный материал (рабочее расположенный в контейнере 2; холодного 3 и горячего 4 теплообменников; дисплейсера (вытеснителя) 5; трубопровода (рабочего контура), который соединяет все эти компоненты и по которому под действием поршня дисплейсера перемещается жидкий теплоноситель. АМР цикл может быть представлен на ST-диаграмме как каскад циклов Брайтона, имеющих между собой тепловую связь, и состоит из двух адиабатических процессов и двух процессов, происходящих при постоянном магнитном поле. Адиабатические процессы соответствуют намагничиванию/размагничиванию рабочего тела, а процессы при постоянном поле – продувке теплоносителя через контейнер с магнитным материалом, представляющим собой активный магнитный регенератор.

На 1-м этапе цикла АМР-холодильника движение потока теплоносителя в устройстве отсутствует. Поршень дисплейсера находится в крайнем правом положении. Магнитный материал в регенераторе адиабатически намагничивается в магнитном поле, создаваемом источником поля. В результате этого температура материала возрастает из-за магнитокалорического эффекта. На 2-м этапе (горячая продувка) поршень

дисплейсера смещается из крайнего правого положения в крайнее левое, вызывая прохождение теплоносителя в рабочем контуре устройства слева направо. Проходя через регенератор, теплоноситель забирает выделившуюся теплоту у магнитного материала и передаёт её в горячий теплообменник, где она сбрасывается в окружающую среду. На 3-м этапе поршень дисплейсера находится крайнем левом положении, движение теплоносителя останавливается, магнитное поле выключается и магнитный материал в регенераторе адиабатически размагничивается. Это вызывает уменьшение магнитокалорического температуры материала из-за эффекта. заключительном, 4-м этап е цикла (холодная продувка) поршень дисплейсера движется из крайнего левого положения в крайнее правое, обеспечивая прохождение теплоносителя через регенератор справа налево. В регенераторе теплоноситель охлаждается и поступает в холодный теплообменник, который отнимает теплоту у охлаждаемой нагрузки. Периодическая работа устройства обеспечивает перекачку теплоты от холодного теплообменника к горячему.

В настоящее время существует большое количество конструкций магнитных холодильников, работающих по разным магнитным термодинамическим циклам. Намагничивание или размагничивание рабочего тела в основном реализуется перемещением магнитного материала или источника поля. Используются 2 основные схемы устройства магнитного холодильника – с линейным возвратно-поступательным перемещением источника поля (или контейнера с магнитным материалом) и с круговым перемещением источника поля (или контейнера с магнитным материалом). Последняя схема получила название колёсной. В качестве источника магнитного поля используют сверхпроводящие магниты (соленоиды), постоянные магниты, электромагниты (только в лабораторных устройствах). Сверхпроводящие низкотемпературных, магниты изготавливают как ИЗ высокотемпературных сверхпроводников. В 1-м случае источники могут эксплуатироваться в т. н. вынужденном режиме, когда ток циркулирует в замкнутом соленоиде и не требует подпитки внешним источником питания. Сверхпроводящие источники поля в основном применяются в образцах спроектированных магнитных большую холодильников, на устройств небольшой холодопроизводительность, ДЛЯ c холодопроизводительностью, работающих в области комнатных температур, применяются источники поля на основе постоянных магнитов.

По сравнению с традиционными холодильниками магнитные холодильники обладают рядом преимуществ. Прежде всего это близость процессов намагничивания или размагничивания к идеальному обратимому процессу, что должно обеспечивать устройству гораздо более высокую эффективность по сравнению с используемыми в настоящее время холодильниками, работающими по газовым и парогазовым циклам. Кроме того, магнитный материал представляет собой гораздо более плотное твёрдое тело, что

обеспечивает компактность устройства. Магнитные холодильники нуждаются в компрессорах, могут работать при низких частотах, что уменьшает их износ, и не используют вредных хладагентов. По сравнению с парогазовыми аналогами магнитные холодильники теоретически характеризуются гораздо большей суммарной эффективностью энергосбережением. В некоторых исследованиях заявляется о теоретической эффективности, достигающей 80% от эффективности цикла Карно. За последние годы создан ряд работающих лабораторных образцов магнитных холодильников, хотя коммерческие устройства на рынке по состоянию на 2020 г. отсутствуют.

Спичкин Юрий Иванович, Тишин Александр Метталинович

Библиография

- Магнитокалорические эффекты в редкоземельных магнетиках / А. С. Андреенко, К. П. Белов, С. А. Никитин [и др.] // Успехи физических наук. 1989. Т. 158, № 4. С. 553—579.
- Tishin A. M. The magnetocaloric effect and its applications / A. M. Tishin, Y. I. Spichkin. Bristol; Philadelphia: Institute of Physics, 2003. (Series in condensed matter physics).